HIV/HBV co-infection
Les Liaisons Dangereuses

Sanjay Bhagani, Royal Free Hospital, London
Reena Shah, AKUH, Nairobi
Inatoa madoa doa yote!!

BEFORE

AFTER

OMO PROGRESS

1kg
Liver Related Mortality
in HIV Infected Patients in HAART Era

Liver Related Mortality (%)

Brescia, Italy¹
Boston, USA²
Madrid, Spain³
Germivic, France⁴

Prevalence of HBV: Global Estimates

HBsAg Prevalence
- High (≥8%)
- Intermediate (2% to 8%)
- Low (<2%)

<table>
<thead>
<tr>
<th>Country</th>
<th>HBsAG +ve, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taiwan</td>
<td>10.0–13.8</td>
</tr>
<tr>
<td>Vietnam</td>
<td>5.7–10.0</td>
</tr>
<tr>
<td>China</td>
<td>5.3–12.0</td>
</tr>
<tr>
<td>Africa</td>
<td>5.0–19.0</td>
</tr>
<tr>
<td>Philippines</td>
<td>5.0–16.0</td>
</tr>
<tr>
<td>Thailand</td>
<td>4.6–8.0</td>
</tr>
<tr>
<td>Japan</td>
<td>4.4–13.0</td>
</tr>
<tr>
<td>Indonesia</td>
<td>4.0</td>
</tr>
<tr>
<td>South Korea</td>
<td>2.6–5.1</td>
</tr>
<tr>
<td>India</td>
<td>2.4–4.7</td>
</tr>
<tr>
<td>Russia</td>
<td>1.4–8.0</td>
</tr>
<tr>
<td>US</td>
<td>0.2–0.5</td>
</tr>
</tbody>
</table>

HBV/HIV co-infection - Prevalence

Australia (anti-HBc)
MACS (HBsAg)
RFH (HBsAg)
N.Europe
C.Europe
S.Europe
E.Europe

EUROSIDA (HBsAg)
Global HIV/HBV

Thio, C. Hepatology 2009; 49(5): s138
AKUH - HIV and viral hep co-infection study
Reena Shah et al, AIDS 2008

- HIV POSITIVE CONSECUTIVE PATIENTS
- CONSENT OBTAINED
- QUESTIONNAIRE FILLED RE-RISKS
- BLOOD OBTAINED FOR FBC LFTs CD4 VL HBsAg HCV-ab

- HBsAg +ve : HBV VL, HBeAg
- HCV - Viral load
- Started on ARVs if required
Total Recruited - 378

- HIV ONLY 351 93%
- HIV/HBV 23 6%
- HIV/HCV 4 1%
HIV and hep B/C coinfection

Local scenario: 378 HIV-infected in- and outpatients

- 93% no coinfection
- 6% hep B
- 1% hep C
Patients with HIV/HBV Co-infection
HIV ONLY VERSUS HIV/HBV

- NO DIFFERENCE IN THE 2 GROUPS IN TERMS OF:
 - VIRAL LOAD P=0.25
 - CD4 COUNTS P=0.405
 - LFTS P=0.212
Comparing only HIV infection and HBV co-infection by the risk factors

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>only HIV</th>
<th>HBV co-infection</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circumcision</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>215 (61.43%)</td>
<td>13 (56.52%)</td>
<td>0.640</td>
</tr>
<tr>
<td>yes</td>
<td>135 (38.57%)</td>
<td>10 (43.48%)</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>primary</td>
<td>31 (9.54%)</td>
<td>0 (0.00%)</td>
<td>0.343</td>
</tr>
<tr>
<td>secondary</td>
<td>105 (32.31%)</td>
<td>6 (31.58%)</td>
<td></td>
</tr>
<tr>
<td>tertiary</td>
<td>189 (58.15%)</td>
<td>13 (68.42%)</td>
<td></td>
</tr>
<tr>
<td>HepB_vaccination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no</td>
<td>286 (81.71%)</td>
<td>23 (100.00%)</td>
<td>0.024</td>
</tr>
<tr>
<td>yes</td>
<td>64 (18.29%)</td>
<td>0 (0.00%)</td>
<td></td>
</tr>
<tr>
<td>Transfusion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>293 (83.95%)</td>
<td>20 (86.96%)</td>
<td>0.703</td>
</tr>
<tr>
<td>Yes</td>
<td>56 (16.05%)</td>
<td>3 (13.04%)</td>
<td></td>
</tr>
</tbody>
</table>
HBsAg+ve 23

- HBeAg +ve 17% (4)
- HBeAg-ve 83% (19) (p = 0.0018)

- 70% of HBsAg patients used ARVs: 16
ARVs USED BY PATIENTS HIV/HBV CO INFECTION

- CBV/NVP: 4%
- CBV/STO: 40%
- TRU/STO: 26%
- Other: 30%
Clinical disease and HBV/HIV co-infection
HIV/HBV Co-infection: Increased risk of ESLD due to HBV

HBV Replication

Geographical distribution of HBV genotypes A to H

- North Europe & USA - A
- Mediterranean basin - D
- Africa E & D A
- Far East B & C

Rare types:
- F - Latin America
- G - France, USA
- H - Mexico, Latin America
Natural history of HBV infection - where does co-infection fit in?

- **Early Childhood**: > 95% Immune Tolerance
- **Immune Tolerance**
- **Inactive Carrier**
- **HCC**
- **HBeAg+ Chronic Hepatitis B**
- **Adulthood**: < 5%
 - HIV/HBV: Increased likelihood
 - HIV/HBV: Increased VL
 - Lower ALT
 - Increased Fibrosis

HBeAg- Chronic Hepatitis B

HIV/HBV: Reduced seroconversion

HIV/HBV
- Higher Viral loads

Phases of chronic HBV

Patient Populations in Chronic Hepatitis B

<table>
<thead>
<tr>
<th>Marker</th>
<th>Immune Tolerant (Type 1)</th>
<th>Immune Active (Type 2)</th>
<th>Inactive HBsAg Carrier (Type 3)</th>
<th>HBeAg neg. CHB (Precore/Core Promoter Mutant) (Type 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBsAg</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HBeAg</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Anti-HBe</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>ALT</td>
<td>Normal</td>
<td>↑</td>
<td>Normal</td>
<td>↑</td>
</tr>
<tr>
<td>HBV DNA (IU/mL)</td>
<td>> 2x10^4</td>
<td>> 2x10^4</td>
<td>< 2x10^2</td>
<td>> 2x10^3</td>
</tr>
<tr>
<td>Inflammation on Histology</td>
<td>Normal/Mild</td>
<td>Active</td>
<td>Normal</td>
<td>Active</td>
</tr>
</tbody>
</table>
African Patients
RFH HIV/HBV cohort (n=79)

- 35% female
- Median age 42yrs
- More likely eAg -ve disease (OR 2.7 p=0.048)
- More likely advanced liver disease (F3/4) (OR 7.3 p=0.002)
- Similar HBV DNA levels (median = 5.74 x 10⁶ c/ml)
- Similar response to TDF+FTC (85% < 200 IU/l at max F/U)

Armenis et al, 5th International HIV/Hepatitis Workshop 2009
When do we need to Rx HBV?

• Everybody with detectable HBV DNA?

• Based on HBV DNA levels?

• Those with evidence of significant liver disease?
 - Based on abnormal ALTs?
 - Histological activity on a liver biopsy?
 - Other tests?
Level of HBV DNA (PCR-assays) at entry & progression to cirrhosis in a population-based cohort study

3582 HBsAg untreated asian carriers
mean follow-up 11 yrs > 365 patients newly diagnosed with cirrhosis

All Participants
(n = 3582)

HBeAg(-), Normal ALT
(n = 2923)

* Adjusted for age, sex, cigarette smoking, and alcohol consumption.

HBV-DNA viral load (> 10^4 cp/ml) strongest predictor of progression to cirrhosis independent of ALT and HBeAg status

Illoeje UH, Gastroenterology 2006; 130: 678-686
How do we stage liver disease in HIV/HBV co-infected patients?

• Liver enzyme testing (ALT/AST) - unreliable

• Liver biopsies - prohibitively expensive and need access to an experienced histopathologist

• 'Non-invasive' tests
 - Serum markers - combined to work out a probability index
 - Elastometry
Why not liver enzyme testing?

• Lower ALT/AST in HIV/HBV co-infected patients BUT more advanced hepatic fibrosis

• Possible explanations
 - Direct fibrogetic effect of HBV
 - HIV directly stimulates stallete cells
 - Systemic immune activation as a result of HIV - hepatic fibrosis
HIV infection increases stellate cell activation

Fold change qRT-PCR

mock HIV IIIB gp120

Tuyama et al. CROI Boston 2008

Collagen I α-SMA (smooth muscle actin)
Immune activation and liver disease

Cirrhosis
HCV
Alcohol

Altered portal vein circulation

HIV -> GIT CD4+ T-cell depletion

Hepatic fibrosis
HSC activation

IL-1
TNF-α
IFN-α
IL-12

Microbial translocation

LPS

Immune activation

Mathurin et al., Hepatology 2000; 32:1008-1017; Paik et al., Hepatology 2003; 37:1043-1055; Balagopal et al., Gastroenterology 2008; 135:226-233..
Practical ‘non-invasive’ tests

- **Biochemical markers**
 - \(\text{APRI} = \frac{\text{AST}(/ULN)}{\text{PLATELET}(109/l)} \times 100 \)
 - \(\text{FIB-4} = (\text{age (yrs)}) \times \frac{\text{AST}(\text{IU/})}{\text{Platelets (109/l)}} \times \frac{\text{ALT} (\text{IU/l})}{\text{1/2}} \)
Elastography

The probe induces an elastic wave through the liver.

The velocity of the wave is evaluated in a location from 2.5 to 6.5 cm below the surface.

Exploded volume

2.5 cm

1 cm Ø

4 cm

Liver biopsy: 1/50,000 of the liver
FibroScan®: 1/500 of the liver
Elastography in HIV/HCV co-infected patients

Source: J Acquir Immune Defic Syndr © 2006 Lippincott Williams & Wilkins

JAIDS 2006; 41: 175-9
Treatment of HBV

• **AIMS**
 - Halt/slow progression to cirrhosis
 - Prevent HCC

• **END POINTS:**
 - Normalization of serum ALT
 - Negative or low HBV DNA level
 - Loss of HBeAg + - appearance of anti-HBe
 - Improvement in liver histology
 - Loss of HBsAg +/- appearance of HBsAb
What does Rx aim to achieve?

HBeAg- Chronic Hepatitis B

Immune Tolerance

Inactive Carrier
eAb+, sAg+ HBV DNA undetectable

HBeAg+ Chronic Hepatitis B

Viral Clearance
e-Ab seroconversion
S-Ab seronversion
Anti-HBV Therapies

Immune modulators

IFN-alpha
Pegylated-Interferon-alpha

Polymerase Inhibitors

Lamivudine
Adefovir
Entacavir
Telbivudine
Tenofovir
Emtricitabine
Treatment of HBV/HIV: key issues

- TDF/FTC works
- What choices if HAART is not indicated
- What is the impact of lamivudine 'monotherapy'
Similar (more potent) anti-HBV Activity of Tenofovir compared to Adefovir in Co-infected Patients

- ACTG A5127: HBV/HIV-1 co-infected pts
 - HBV DNA 100,000
 - Stable antiretroviral therapy; HIV-1 RNA 10,000
- Reduction in HBV DNA with tenofovir non-inferior to adefovir

TDF+FTC - RFH experience over 4 years

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Baseline (n=59)</th>
<th>4-8 months (n=55)</th>
<th>Maximal follow up (n=68)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median HBV DNA (copies/ml)</td>
<td>4.6 x 10^6</td>
<td>215</td>
<td>25</td>
</tr>
<tr>
<td>(copies/ml)</td>
<td>25-6.4 x 10^6</td>
<td>25-1.12 x 10^7</td>
<td>25- 8.9 x 10^5</td>
</tr>
<tr>
<td>IQR</td>
<td>25-6.4 x 10^6</td>
<td>25-1.12 x 10^7</td>
<td>25- 8.9 x 10^5</td>
</tr>
<tr>
<td>HBV DNA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><10^2</td>
<td>6 (10%)</td>
<td>25 (45%)</td>
<td>53 (78%)</td>
</tr>
<tr>
<td>10^2-10^3</td>
<td>10 (17%)</td>
<td>14 (25%)</td>
<td>7 (10%)</td>
</tr>
<tr>
<td>10^3-10^4</td>
<td>7 (12%)</td>
<td>6 (11%)</td>
<td>2 (3%)</td>
</tr>
<tr>
<td>10^4-10^5</td>
<td>0 (0%)</td>
<td>4 (7%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>10^5-10^6</td>
<td>2 (3%)</td>
<td>3 (5%)</td>
<td>4 (6%)</td>
</tr>
<tr>
<td>>10^7</td>
<td>34 (58%)</td>
<td>3 (5%)</td>
<td>2 (3%)</td>
</tr>
</tbody>
</table>

Rodger et al. AP&T 2009 (in press)
Treatment Algorithm:
Patients with Compensated Liver Disease and No indication for HIV therapy (CD4 count > 350/µl)

- No treatment
- Monitor every 6–12 months
- Monitor ALT every 3-12 months
- Consider biopsy and treat if disease present***

HIV/HBV*

HBV DNA <2,000 IU/mL**

- No treatment
- Monitor every 6–12 months

HBV DNA ≥2,000 IU/mL

ALT Normal

- Monitor ALT every 3-12 months
- Consider biopsy and treat if disease present***

ALT Elevated

- PEG IFN**** (favorable response factors are: HBeAg+ - HBV Genotype A – elevated ALT and low HBV-DNA)
- Telbivudine (if HBV-DNA ist still detectable at week 24 add adefovir to minimize resistance development risk)
- Adefovir and telbivudine de novo therapy
- Early HAART initiation including Tenofovir+3TC/FTC

HBV DNA <2,000 IU/mL**

Response to Interferon-α in HIV-HBV coinfected patients

* Randomized trial
Can immune control really be restored and maintained in HIV+ patients?

Wursthorn K et al. Antiviral Therapy 2006;11:647-52.
Telbuvidine - ?anti-HIV activity

No *in vitro* activity against 8 wild-type HIV-1, 2 drug resistant HIV-1 isolates

E Low, *et al.* CROI 2009;P813a

C Avila, *et al.* CROI 2009;P813b
HIV/HBV Co-infection

CD4 >500 or No indication of HAART

- HBV Rx Indicated\(^b\)
 - a) PegIFN if Genotype A, high ALT, low HBV DNA
 - b) Early HAART including TDF + FTC/3TC\(^e\)

- No HBV Rx indicated\(^b\)
 - Monitor Closely

CD4 < 500 or Symptomatic HIV or Cirrhosis\(^a\)

- Lamivudine experienced
 - Add or substitute one NRTI with TDF\(^d\)

- Lamivudine Naive
 - HAART Including TDF+3TC or FTC\(^c\)
Incidence of HBV Resistance in Patients Treated with LAM in HBV infection vs HIV/HBV coinfection

Impact of lamivudine resistance on progression of liver disease

 Patients with severe fibrosis or cirrhosis

- Placebo (n = 215)
- YMDDm (n = 209) (49%)
- Wild-Type (n = 221)

Liaw, N Engl J Med. 2004
Envelope/Polymerase Mutations and Antigen/Antibody Binding Capacity in HBV/HIV Co-infected Subjects with LAM Resistance

TWO Important consequences

a) Vaccine escape HBV
b) Detection escape HBV

<table>
<thead>
<tr>
<th>Mutations</th>
<th>Ag–Ab binding [IC$_{50}$ (µg/ml)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type</td>
<td>Wild type</td>
</tr>
<tr>
<td>HBIG escape</td>
<td></td>
</tr>
<tr>
<td>sG145R</td>
<td>rtW153G</td>
</tr>
<tr>
<td>Anti-viral drug resistant</td>
<td></td>
</tr>
<tr>
<td>sE164D</td>
<td>rtV173L</td>
</tr>
<tr>
<td>sW196S</td>
<td>rtM204I</td>
</tr>
<tr>
<td>sI195M</td>
<td>rtM204V</td>
</tr>
<tr>
<td>sM198I</td>
<td>rtV207I</td>
</tr>
<tr>
<td>sE164D/I195M</td>
<td>rtV173/rtL180/rtM204V</td>
</tr>
</tbody>
</table>

Case Study

- Patient MN
- 40 years, nurse, HIV positive
- ARVs (CBV/stocrin) since 2002, adherent
- HIV VL<50 since 2003
- Admitted with hepatic failure to ICU
- Died within 24 hours despite supportive measures
Results:

- CD4 550, VL<50
- Hep A negative
- HBsAg +ve, HBV DNA >1,000,000 c/ml
- eAg negative
- Liver enzymes greater that 4 times normal
- INR 3
- Albumin 22
ARV Rollout
AZT/d4T+LAM+NNRTI
?Global Impact
Unequal Burden?
Even the best are only human..........................